Domain nlp-seminare.de kaufen?

Produkt zum Begriff Maschinelles Lernen Machine Learning:


  • Maschinelles Lernen (Frochte, Jörg)
    Maschinelles Lernen (Frochte, Jörg)

    Maschinelles Lernen , Maschinelles Lernen ist ein interdisziplinäres Fach, das die Bereiche Informatik, Mathematik und das jeweilige Anwendungsgebiet zusammenführt. In diesem Buch werden alle drei Teilgebiete gleichermaßen berücksichtigt: - Algorithmen des maschinellen Lernens verwenden und verstehen, wie und warum sie funktionieren. - Kickstart zur Verwendung von Python 3 und seinem Ökosystem im Umfeld des maschinellen Lernens. - Verschiedene Methoden des überwachten, unüberwachten und bestärkenden Lernens, u.a. Random Forest, DBSCAN und Q-Learning. Die Algorithmen werden zum besseren Verständnis und praktischen Einsatz anschaulich mittels NumPy und SciPy umgesetzt. Für die Support Vector Machines und das Deep Learning wird auf scikit-learn bzw. Keras zurückgegriffen. Die dritte Auflage wurde für die Keras/Tensorflow-Version 2 sowie Python 3.7 überarbeitet, mehrere Kapitel insbesondere zum bestärkten Lernen wurde aktualisiert und folgende Themen wurden unter anderem neu aufgenommen: - Deep Q-Learning - Class Activation Maps und Grad-CAM - Pandas-Integration und -Einführung - OpenAI Gym integriert Das Buch ist ideal für Studierende der Informatik, Mechatronik, Elektrotechnik und der angewandten Statistik/Data Science sowie für Ingenieure und Informatiker in der Praxis. Vorausgesetzt werden Kenntnisse in objektorientierter Programmierung und Basiswissen der Hochschulmathematik. Die nötige Mathematik wird eingebettet im Buch präsentiert und die Theorie direkt in Python-Code umgesetzt. , Bücher > Bücher & Zeitschriften , Auflage: 3., überarbeitete und erweiterte Auflage, Erscheinungsjahr: 20201120, Produktform: Kassette, Inhalt/Anzahl: 1, Inhalt/Anzahl: 1, Autoren: Frochte, Jörg, Auflage: 21003, Auflage/Ausgabe: 3., überarbeitete und erweiterte Auflage, Seitenzahl/Blattzahl: 616, Keyword: artificial intelligence basics; artificial intelligence machine learning; künstliche intelligenz ai; künstliche intelligenz programmieren; künstliche intelligenz verstehen; machine learning book; machine learning python; maschinelles lernen anfänger; maschinelles lernen grundlagen; maschinelles lernen python; selbstlernende ki; selbstlernende systeme, Fachschema: Wahrscheinlichkeitsrechnung~Intelligenz / Künstliche Intelligenz~KI~Künstliche Intelligenz - AI, Bildungszweck: für die Hochschule, Fachkategorie: Maschinelles Lernen, Thema: Verstehen, Text Sprache: ger, Sender’s product category: BUNDLE, Verlag: Hanser Fachbuchverlag, Verlag: Hanser Fachbuchverlag, Verlag: Hanser, Carl, Verlag GmbH & Co. KG, Länge: 241, Breite: 177, Höhe: 40, Gewicht: 1167, Produktform: Gebunden, Genre: Mathematik/Naturwissenschaften/Technik/Medizin, Genre: Mathematik/Naturwissenschaften/Technik/Medizin, Beinhaltet: B0000059240001 B0000059240002, Beinhaltet EAN: 9783446913387 9783446913394, Vorgänger EAN: 9783446459960 9783446452916, eBook EAN: 9783446463554, Herkunftsland: DEUTSCHLAND (DE), Katalog: deutschsprachige Titel, Katalog: Gesamtkatalog, Katalog: Kennzeichnung von Titeln mit einer Relevanz > 30, Katalog: Lagerartikel, Book on Demand, ausgew. Medienartikel, Relevanz: 0050, Tendenz: +1, Unterkatalog: AK, Unterkatalog: Bücher, Unterkatalog: Hardcover, Unterkatalog: Lagerartikel, WolkenId: 1788644

    Preis: 39.99 € | Versand*: 0 €
  • Fischer, Jörn: Maschinelles Lernen für Dummies
    Fischer, Jörn: Maschinelles Lernen für Dummies

    Maschinelles Lernen für Dummies , Maschinelles Lernen ist eines der wichtigsten Teilgebiete der künstlichen Intelligenz und das Verstehen und Entwickeln von passenden Algorithmen bleibt die große Herausforderung. Dieses Buch bietet einen außergewöhnlich umfassenden Überblick über die neuesten Algorithmen und die bereits bewährten Verfahren. Jörn Fischer beschreibt nicht nur deren Funktionsweise, sondern gibt für alle Bereiche verständliche Beispiele, die detailliert beschrieben und leicht nachvollziehbar sind. Außerdem werden hilfreiche Methoden zur Fehlersuche und -beseitigung an die Hand gegeben. , Studium & Erwachsenenbildung > Fachbücher, Lernen & Nachschlagen

    Preis: 28.00 € | Versand*: 0 €
  • GOOGLE CORAL USB Accelerator: USB Koprozessor für maschinelles Lernen
    GOOGLE CORAL USB Accelerator: USB Koprozessor für maschinelles Lernen

    Der Google Coral USB Accelerator bringt Real-Time Inferenz für Ihren Pi 4 und viele andere Computer! Künstliche Intelligenz / Machine Learning für alle: Google hat mit dem Coral USB Accelerator einen leistungsfähigen Spezialchip (TPU, Tensor Processing Unit) an ein USB 3 Interface angebunden - damit können Tensor Flow Lite Modelle schnell und energiesparend für Inferenz genutzt werden. Ein besonderer Vorteil dieser Lösung: Ihre Daten bleiben lokal. Das hilft bei der Latenz, und natürlich beim Datenschutz! Google nutzt zunehmend künstliche Intelligenz (AI) und maschinelles Lernen (ML) um seine Dienstleistungen zu realisieren. Dazu entwickelte es für seine Rechenzentren spezialisierte Prozessoren namens TPU ("tensor processing unit"); die die Algorithmen mit dem TensorFlow Framework schneller und energiesparender ausführen können. Beispielsweise wird Google Maps durch von Street View aufgenommene Straßenschilder verbessert, die mit Hilfe eines auf TensorFlow basierenden neuronalen Netzes analysiert werden. Der Clou: TensorFlow kann einfach in Python programmiert werden. Google bringt mit der Edge TPU, die das TensorFlow Lite Framework unterstützt, einen USB 3 Stick auf den Markt. Die Edge TPU kann bis zu 4 Billionen Rechenoperationen pro Sekunde mit nur 2 W Verbrauch durchführen. Perfekt in Kombination mit dem Pi 4! Mit Hilfe der Google Coral Edge TPU kann Inferenz beispielsweise mit dem MobileNet v2 Model bis zu 20 x schneller als auf "dem nackten" Pi 4 ausgeführt werden. Es können so real-time Erkennungen in Videostreams mit über 50 fps durchgeführt werden, die mit dem Pi 4 ohne Beschleuniger nicht möglich wären. Dank Python und vielen Beispielen online rund um TensorFlow kann man in das Thema künstliche Intelligenz und Machine Learning mit dem Google Coral USB Accelerator einfach und mit Stil einsteigen. Hier finden Sie die offizielle "Get started" Anleitung für den USB Accelerator! https://coral.ai/docs/accelerator/get-started Technische Daten Coral USB Accelerator • Google Edge TPU ML accelerator coprocessor • USB 3.0 (USB 3.1 Gen 1) Type C socket • Unterstützt Linux, Mac und Windows auf dem Hostsystem • Leistungsaufnahme bis zu 900 mA Peak @ 5 V • Abmessungen Coral USB Stick: 65 mm x 30 mm x 8 mm Diese Benchmarks sind interessant, um ein Gefühl für die Leistungsfähigkeit des Coral USB Accelerators zu bekommen. https://coral.ai/docs/edgetpu/benchmarks/ Anforderungen an das Hostsystem • Linux Debian 6.0 oder höher, oder ein Derivat davon (bspw. Ubuntu 10.0+, Raspbian) • Systemarchitektur: x86-64, ARMv7 (32-bit) oder ARMv8 (64-bit) • macOS 10.15 mit entweder MacPorts oder Homebrew installiert • Windows 10 • Ein freier USB Port (sollte für beste Performance USB 3 sein) • Python 3.5, 3.6 oder 3.7 Umgebungstemperatur Empfohlene Umgebungstemperatur: • 35°C - reduzierte Taktfrequenz • 25°C - maximale Taktfrequenz (für optimale Leistung) Lieferumfang Google Coral USB Accelerator • USB Accelerator • USB 3 Kabel Google stellt im Coral.ai Projekt mehrere interessante Beispiele und Tutorials ( https://coral.ai/examples/ ) bereit, beispielsweise eine "Variante" von AlphaGo Zero die Minigo ( https://coral.ai/projects/minigo/ ) genannt wird. Potential für industrielle Anwendungen Der Google Coral USB Accelerator ist ein revolutionäres Produkt, ähnlich wie der Raspberry Pi, für machine learning Anwendungen! Damit werden embedded Lösungen möglich, die beispielsweise Probleme mit Werkstücken erkennen können, Verkehrssituation erkennen können, und vieles mehr. Downloads & Dokumentation • USB Accelerator Datenblatt (Datenblatt als PDF) https://coral.ai/docs/accelerator/datasheet/ • 3D CAD Datei im STEP Format https://storage.googleapis.com/site_and_emails_static_assets/Files/Coral-USB-Accelerator.STEP • Edge TPU inferencing overview (Tensor Flow Lite Modelle) https://coral.ai/docs/edgetpu/inference/ • TensorFlow models on the Edge TPU https://coral.ai/docs/edgetpu/models-intro/ • Pipeline C++ API Referenz https://coral.ai/docs/reference/cpp/pipeline/ • Edge TPU Python API https://coral.ai/docs/edgetpu/api-intro/ Hinweise & Sonstiges Wichtiger Hinweis: Der USB Stick kann beim Betrieb sehr heiß werden, was Verbrennungen verursachen kann - bitte warten Sie bis er abgekühlt ist bevor Sie ihn anfassen! Google und wir übernehmen keine Verantwortung für Schäden falls das Gerät außerhalb der empfohlenen Umgebungstemperatur betrieben wird. Google Teilenummer: G950-01456-01

    Preis: 68.31 € | Versand*: 5.99 €
  • Arduino Tiny Machine Learning Kit
    Arduino Tiny Machine Learning Kit

    Arduino Tiny Machine Learning Kit

    Preis: 59.50 € | Versand*: 4.95 €
  • Wie beeinflusst Machine Learning unsere täglichen Entscheidungen und Prozesse? Wie können Maschinen durch Maschinelles Lernen Muster und Trends erkennen und anwenden?

    Machine Learning beeinflusst unsere täglichen Entscheidungen, indem es uns personalisierte Empfehlungen und Vorhersagen liefert. Maschinen können durch Maschinelles Lernen große Datenmengen analysieren, um Muster und Trends zu erkennen und diese Informationen für bessere Entscheidungen zu nutzen. Dies ermöglicht es Unternehmen, effizienter zu arbeiten und innovative Lösungen zu entwickeln.

  • Warum Deep Learning im Vergleich zu Machine Learning?

    Deep Learning unterscheidet sich von Machine Learning durch seine Fähigkeit, automatisch Merkmale aus den Daten zu extrahieren, anstatt dass diese manuell definiert werden müssen. Dadurch ist Deep Learning in der Lage, komplexere und abstraktere Muster in den Daten zu erkennen und zu lernen. Dies ermöglicht es Deep Learning-Modellen, in vielen Anwendungsbereichen, wie Bild- und Spracherkennung, bessere Leistungen zu erzielen als herkömmliche Machine Learning-Modelle.

  • Was ist Python Machine Learning?

    Python Machine Learning bezieht sich auf die Verwendung von Python-Programmierung, um maschinelles Lernen zu implementieren. Dabei werden Algorithmen und Modelle erstellt, die es Computern ermöglichen, aus Daten zu lernen und Vorhersagen zu treffen. Python bietet eine Vielzahl von Bibliotheken wie Scikit-learn, TensorFlow und Keras, die das Entwickeln von Machine-Learning-Anwendungen erleichtern. Mit Python Machine Learning können komplexe Probleme gelöst und Muster in großen Datenmengen entdeckt werden.

  • Ist Machine Learning bereits künstliche Intelligenz?

    Machine Learning ist ein Teilgebiet der künstlichen Intelligenz. Es befasst sich mit der Entwicklung von Algorithmen und Modellen, die es Computern ermöglichen, aus Daten zu lernen und Vorhersagen zu treffen. Künstliche Intelligenz umfasst jedoch auch andere Bereiche wie Expertensysteme, natürliche Sprachverarbeitung und Robotik.

Ähnliche Suchbegriffe für Maschinelles Lernen Machine Learning:


  • Learning Resources Spielset - Zählen lernen, mehrfarbig
    Learning Resources Spielset - Zählen lernen, mehrfarbig

    Mit dem Spielset von Learning Resources erleben Kids ab drei Jahren die Freude am Erlernen neuer Fähigkeiten im Zählen und der Farberkennung. Spielset - Zählen lernen von Learning Resources mit 10 Geschenken von 3 bis 8 Jahren geeignet In jeder der farbenfrohen, nummerierten Schachteln finden Kinder eine lustige Überraschung - von einem kleinen blauen Roboter über ein hochfliegendes Flugzeug bis hin zu einem freundlichen Teddybären. Insgesamt gibt es 10 Geschenke, die Kinder immer wieder aus- und einpacken können. Neben der Entwicklung feinmotorischer Fähigkeiten bei jedem Auspacken lernen sie auch, Farben und Zahlen zu erkennen. Sie können das Spielzeug nach den Farben der Schachteln sortieren, ihre Geschenke zählen oder die Punkte auf den Deckeln mit den Zahlen auf der Vorderseite der Schachteln abgleichen. Kinder können die Geschenke aus dem Set auch für fantasievolle Versteckspiele oder als lustige Ergänzung zu ihren Rollenspielen verwenden.

    Preis: 25.89 € | Versand*: 1.99 €
  • SparkFun MicroMod Machine Learning Carrier Board
    SparkFun MicroMod Machine Learning Carrier Board

    SparkFun MicroMod Machine Learning Carrier Board

    Preis: 23.75 € | Versand*: 4.95 €
  • Raschka, Sebastian: Machine Learning Q and AI
    Raschka, Sebastian: Machine Learning Q and AI

    Machine Learning Q and AI , "An advanced exploration of machine learning and AI, with each chapter asking and answering a question from the field. Divided into five sections: deep learning and neural networks; computer vision; natural language processing; production and deployment; and predictive performance and model evaluation"-- , >

    Preis: 37.30 € | Versand*: 0 €
  • Adafruit BrainCraft HAT - Machine Learning mit Raspberry Pi 4
    Adafruit BrainCraft HAT - Machine Learning mit Raspberry Pi 4

    Adafruit BrainCraft HAT - Machine Learning mit Raspberry Pi 4

    Preis: 49.45 € | Versand*: 4.95 €
  • Was ist der Unterschied zwischen Deep Learning und Machine Learning?

    Deep Learning ist eine spezielle Methode des Machine Learning, die auf künstlichen neuronalen Netzwerken basiert. Es ermöglicht das Lernen von hierarchischen und komplexen Merkmalsdarstellungen, um automatisch Muster und Strukturen in Daten zu erkennen. Im Gegensatz dazu ist Machine Learning ein breiterer Begriff, der verschiedene Algorithmen und Techniken umfasst, um Computermodelle zu erstellen, die aus Daten lernen und Vorhersagen treffen können. Deep Learning ist also eine Teilmenge des Machine Learning.

  • Ist ein Machine Learning Engineer ein Ingenieur?

    Ja, ein Machine Learning Engineer ist ein Ingenieur. Sie haben in der Regel einen technischen Hintergrund und arbeiten an der Entwicklung und Implementierung von Machine Learning-Modellen und -Algorithmen. Sie nutzen ihre technischen Fähigkeiten, um Daten zu analysieren, Modelle zu trainieren und Lösungen für komplexe Probleme zu entwickeln.

  • Kennt sich jemand mit Machine Learning aus?

    Ja, es gibt viele Menschen, die sich mit Machine Learning auskennen. Machine Learning ist ein Teilgebiet der künstlichen Intelligenz, das sich mit der Entwicklung von Algorithmen und Modellen befasst, die es Computern ermöglichen, aus Daten zu lernen und Vorhersagen oder Entscheidungen zu treffen. Es gibt viele Experten und Forscher, die sich intensiv mit Machine Learning beschäftigen und in verschiedenen Bereichen wie der Medizin, der Finanzwelt oder der Robotik Anwendungen entwickeln.

  • Ist AWS der Standard im Machine Learning?

    AWS ist einer der führenden Anbieter von Cloud-Computing-Diensten, einschließlich Machine Learning. Es bietet eine breite Palette von ML-Diensten und Tools wie Amazon SageMaker und Amazon Rekognition, die von vielen Unternehmen genutzt werden. Obwohl AWS als Standard angesehen werden kann, gibt es auch andere Anbieter wie Google Cloud und Microsoft Azure, die ebenfalls starke ML-Funktionen bieten. Die Wahl des richtigen Anbieters hängt von den spezifischen Anforderungen und Präferenzen des Unternehmens ab.

* Alle Preise verstehen sich inklusive der gesetzlichen Mehrwertsteuer und ggf. zuzüglich Versandkosten. Die Angebotsinformationen basieren auf den Angaben des jeweiligen Shops und werden über automatisierte Prozesse aktualisiert. Eine Aktualisierung in Echtzeit findet nicht statt, so dass es im Einzelfall zu Abweichungen kommen kann.